photo Diyora Salimova
ETH Zurich

Diyora Salimova
Seminar for Applied Mathematics
Department of Mathematics
ETH Zurich
Rämistrasse 101
8092 Zürich

Office: Room HG G 54.1
Phone: +41 44 633 9431
Fax: +41 44 632 1104

E-mail: diyora.salimova (at)

Links: [Profile on ResearchGate] [Profile on GoogleScholar] [Profile on MathSciNet]


  • since 09/2016:      PhD student in Applied Mathematics, ETH Zurich, Switzerland
  • 10/2015:               Master of Science in Applied Mathematics, ETH Zurich, Switzerland
  • 06/2013:               Bachelor of Science in Mathematics, Jacobs University Bremen, Germany


  • Beccari, M., Hutzenthaler, M., Jentzen, A., Kurniawan, R., Lindner, F., and Salimova, D., Strong and weak divergence of exponential and linear-implicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities. [arXiv] (2019), 65 pages.
  • Mazzonetto, S. and Salimova, D., Existence, uniqueness, and numerical approximations for stochastic Burgers equations. [arXiv] (2019), 23 pages.
  • Jentzen, A., Mazzonetto, S., and Salimova, D., Existence and uniqueness properties for solutions of a class of Banach space valued evolution equations. [arXiv] (2018), 28 pages.
  • Jentzen, A., Salimova, D., and Welti, T., A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients. [arXiv] (2018), 48 pages.

Published papers

  • Jentzen, A., Salimova, D., and Welti, T., Strong convergence for explicit space-time discrete numerical approximation methods for stochastic Burgers equations. J. Math. Anal. Appl. 469 (2019), no. 2, 661-704. [arXiv].
  • Hutzenthaler, M., Jentzen, A., and Salimova, D., Strong convergence of full-discrete nonlinearity-truncated accelerated exponential Euler-type approximations for stochastic Kuramoto-Sivashinsky equations. Comm. Math. Sci. 16 (2018), no. 6, 1489-1529. [arXiv].
  • Gerencsér, M., Jentzen, A., and Salimova, D., On stochastic differential equations with arbitrarily slow convergence rates for strong approximation in two space dimensions. Proc. Roy. Soc. London A 473 (2017). [arXiv].
  • Ibragimov, Z. and Salimova, D. , On an inequality in l_p(C) involving Basel problem. Elem. Math. 70 (2015), 79-81.